top of page

PUBLICATIONS

The heterochronic LIN-14 protein is a BEN domain transcription factor

Sharrell Greene, Ji Huang, Keith Hamilton, Liang Tong, Oliver Hobert, and HaoSheng Sun

Heterochrony is a foundational concept in animal development and evolution, first introduced by Ernst Haeckel in 1875 and later popularized by Stephen J. Gould1. A molecular understanding of heterochrony was first established by genetic mutant analysis in the nematode C. elegans, revealing a genetic pathway that controls the proper timing of cellular patterning events executed during distinct postembryonic juvenile and adult stages2. This genetic pathway is composed of a complex temporal cascade of multiple regulatory factors, including the first-ever discovered miRNA, lin-4, and its target gene, lin-14, which encodes a nuclear, DNA-binding protein2,3,4. While all core members of the pathway have homologs based on primary sequences in other organisms, homologs for LIN-14 have never been identified by sequence homology. We report that the AlphaFold-predicted structure of the LIN-14 DNA binding domain is homologous to the BEN domain, found in a family of DNA binding proteins previously thought to have no nematode homologs5. We confirmed this prediction through targeted mutations of predicted DNA-contacting residues, which disrupt in vitro DNA binding and in vivo function. Our findings shed new light on potential mechanisms of LIN-14 function and suggest that BEN domain-containing proteins may have a conserved role in developmental timing.

nihms-1873816-f0001.jpg

Structural homology of LIN-14 DNA-binding domain to BEN domain.
(A) The motif logo of the LIN-14 DNA-binding domain is minimally similar to that of the BEN domain. The motif logos are generated using WebLogo 3. The alignment of 4,441 sequences from Pfam (PF10524) was used to generate the logo for BEN domains, while the alignment of 139 LIN-14 homologs across many nematode species (obtained from the WormBase ParaSite and aligned using ClustalOmega) was used to generate the logo for the LIN-14 domain. The dotted black boxes denote the five alpha-helices in the predicted LIN-14 structure (B,C), and the red dots denote the four arginine residues predicted to be important in DNA binding (C–E). (B) The predicted structure of the LIN-14 DNA-binding domain by AlphaFold (green, left, Uniprot Q21446) is homologous to the structures of BEN domains (Drosophila melanogaster insv, gray, middle, PDB 4IX7; Homo sapiens BEND3 BEN4, pink, right, PDB 7W27)5,8. See Supplemental Experimental Procedures in Supplemental information for how homologous structures were identified. (C) Predicted structure of the LIN-14 BEN domain (green) overlaid with the structure of Drosophila insv BEN domain (gray) bound to DNA (orange), showing the LIN-14 arginine residues (purple) that contact DNA that we mutate in panels D and E. (D) Wild-type LIN-14 proteins bind to the nlp-45 promoter sequence while two separate arginine (R) to alanine (A) mutant LIN-14 proteins do not, as demonstrated in the electrophoretic mobility shift assay. The black arrow indicates unbound 6-FAM labeled nlp-45 promoter sequence dsDNA probes. (E) Animals with mutation of arginine residues in LIN-14’s BEN domain, lin-14(syb5772), mimic lin-14(ma135) null mutant animals in adult morphology and the de-repression of nlp-45 expression in first larval stage animals. Both lin-14(ma135) and lin-14(syb5772) adult animals are dumpy, egg-laying defective, sterile, and display a protruding vulva (indicated by white arrows, upper panel). The bottom panels show de-repressed nlp-45 expression in the head of L1 lin-14(ma135) and lin-14(syb5772) animals compared to control animals. See Figure S1F for cell identification details. The red bars in the bottom right represent 10 μm.

2024

Prince GS, Reynolds M, Martina V, Sun H. Gene-environmental regulation of the postnatal post-mitotic neuronal maturation. Trends Genet. 2024 Apr 23:S0168-9525(24)00068-4. doi: 10.1016/j.tig.2024.03.006. Epub ahead of print. PMID: 38658255.

​

2023

Greene S, Huang J, Hamilton K, Tong L, Hobert O, Sun H. The heterochronic LIN-14 protein is a BEN domain transcription factor. Curr Biol. 33(6):R217-R218. 

 

Suzuki N, Zou Y, Sun H, Eichel K, Shao M, Shih M, Shen K, Chang C. Two intrinsic timing mechanisms set start and end times for dendritic arborization of a nociceptive neuron. PNAS 119(45):e2210053119. 

​

Sun H, Hobert O. Temporal transitions in the postembryonic nervous system of the nematode Caenorhabditis elegans: Recent insights and open questions. Semin. Cell. Dev. Biol. 142:67-80.

​

2021

Sun H, Hobert O. Temporal transitions in post-mitotic neurons throughout the C. elegans nervous system. Nature 600(7887):93-99. 
 

Isabella AJ, Leyva-Diaz e, Kaneko T, Gratz SJ, Moens CB, HobertO, O’Connor-Giles K, Thskur R, Sun H. The field of neurogenetics: where it stands and where it is going. Genetics 218(4):iyab085.

​

Berghoff EG, Glenwinkel L, Bhattacharya A, Sun H, Mohammadi N, Antone A, Feng Y, Nguyen K, Cook SJ, Wood  JF, Masoudi N, Cros C, Ferkey DM, Hall DH, Hobert O. The Prop1-like homeobox gene unc-42 specifies the identity of synaptically connected neurons. Elife 10:e64903.

​

2020

Bayer EA, Sun H, Rafi I, Hobert O. Temporal, Spatial, Sexual and Environmental Regulation of the Master  Regulator of Sexual Differentiation in C. elegans. Curr Biol 30(18):3604-3616.

​

2019

Anderson EM, Sun H, Guzman D, Taniguchi M, Cowan CW, Maze I, Nestler EJ, Self DW. Knockdown of the histone di-methyltransferase G9a in nucleus accumbens shell decreases cocaine self-administration, stress- induced reinstatement, and anxiety. Neuropsychopharmacology 44(8):1370-1376.

​

2018

Iglesia BV, Aghayeva U, Sun H, Wang C, Glenwinkel L, Bayer E, Hobert O. An atlas of C. elegans chemoreceptor  expression. PLoS Biol. 16(1):e2004218.

​

2017

Sun H, Damez-Werno D, Scobie K, Shao N, Dias C, Rabkin J, Wright K, Mouzon E, Kabbaj M, Neve R, Turecki G, Shen L, Nestler EJ. Regulation of BAZ1A and nucleosome positioning in the nucleus accumbens in response to  cocaine. Neuroscience. 353:1-6.

​

2016

Damez-Werno DM, Sun H, Scobie KN, Shao N, Rabkin J, Dias C, Calipari ES, Maze I, Pena CJ, Walker DM, Cahill ME, Chandra R, Gancarz A, Mouzon E, Landry JA, Cates H, Lobo MK, Dietz D, Allis CD, Guccione E, Turecki G, Defilippi P, Neve RL, Hurd YL, Shen L, Nestler EJ. Histone arginine methylation in cocaine action in the nucleus  accumbens. Proc Natl Acad Sci USA. 113(34): 9623-8.

 

Bagot RC, Cates HM, Purushothaman I, Lorsch ZS, Walker DM, Wang J, Huang X, Schlüter OM, Maze I, Peña CJ, Heller EA, Issler O, Wang M, Song WM, Stein JL, Liu X, Doyle MA, Scobie KN, Sun H, Neve RL, Geschwind D, Dong Y, Shen L, Zhang B, Nestler EJ. Circuit-wide Transcriptional Profiling Reveals Brain Region-Specific Gene Networks Regulating Depression Susceptibility. Neuron. 90(5): 969-83.

 

Sun H, Martin JA, Werner CT, Wang ZJ, Damez-Werno DM, Scobie KN, Shao NY, Dias C, Rabkin J, Koo JW, Gancarz AM, Mouzon EA, Neve RL, Shen L, Dietz DM, Nestler EJ. BAZ1B in Nucleus Accumbens Regulates Reward-Related Behaviors in Response to Distinct Emotional Stimuli. Journal of Neuroscience. 36(14): 3954-61.

 

Cahill ME, Bagot RC, Gancarz AM, Walker DM, Sun H, Wang ZJ, Heller EA, Feng J, Kennedy PJ, Koo JW, Cates HM, Neve RL, Shen L, Dietz DM, Nestler EJ. Bidirectional Synaptic Structural Plasticity after Chronic Cocaine Administration Occurs through Rap1 Small GTPase Signaling. Neuron. 89(3): 566-82.

​

2015

Sun H, Damez-Werno D, Scobie K, Shao N, Dias C, Rabkin J, Koo JW, Korb E, Bagot R, Ahn FH, Cahill M, Labonte B, Mouzon E, Heller E, Cates H, Golden SA, Gleason K, Russo SJ, Andrews S, Neve R, Kennedy PJ, Maze I, Dietz DM, Allis CD, Turecki G, Varga-Weisz P, Tamminga C, Shen L, Nestler EJ. ACF chromatin remodeling complex mediates stress-induced depressive-like behavior. Nature Medicine. 21(10): 1146-53.

 

Dias C, Dietz D, Mazei-Robison M, Sun H, Damez-Werno D, Ferguson D, Wilkinson M, Magida J, Gao V, Neve R, Nestler EJ. Dishevelled-2 regulates cocaine-induced structural plasticity and Rac1 activity in the nucleus accumbens. Neurosci Lett. 598: 23-8.

 

Koo JW, Mazei-Robison MS, LaPlant Q, Egevari G, Braunscheidel KM, Adank DN, Ferguson D, Feng J, Sun H, Scobie KN, Damez-Werno D, Riberio E, Pena CJ, Walker D, Bagot RC, Cahill ME, Anderson SA, Labonte B, Hodes GE, Browne H, Chadwick B, Robison AJ, Vialou VF, Dias C, Lorsch Z, Mouzon E, Lobo MK, Dietz DM, Russo SJ, Neve RL, Hurd YL, Nestler EJ. Epigenetic basis of opiate suppression of Bdnf gene expression in the ventral tegmental area. Nature Neuroscience. 18(3): 415-22.

​

2014

Dias C, Feng J, Sun H, Shao NY, Mazei-Robison MS, Damez-Werno D, Scobie K, Bagot R, Labonte B, Ribeiro E, Liu X, Kennedy P, Vialou V, Ferguson D, Pena C, Calipari ES, Koo JW, Mouzon E, Ghose S, Tamminga C, Neve R, Shen L, Nestler EJ. β-Catenin mediates stress resilience through Dicer1/microRNA regulation. Nature. 516(7529): 51-5.

 

Maze I, Shen L, Zhang B, Garcia BA, Shao N, Mitchell A, Sun H, Akbarian S, Allis CD, Nestler EJ. Analytical tools and current challenges in the modern era of neuroepigenomics. Nat Neurosci. 17(11): 1476-90.

 

Heller EA, Cates HM, Pena CJ, Sun H, Shao N, Feng J, Golden SA, Herman JP, Walsh JJ, Mazei-Robison M, Ferguson D, Knight S, Gerber MA, Nievera C, Han MH, Russo SJ, Tamminga CS, Neve RL, Shen L, Zhang HS, Zhang F, Nestler EJ. Locus-specific epigenetic remodeling controls addiction- and depression-related behaviors. Nature Neuroscience. 17(12): 1720-7.

​

Robison AJ, Vialou V, Sun H, Labonte B, Golden SA, Dias C, Turecki G, Tamminga C, Russo SJ, Mazei-Robison MS,  Nestler EJ. Fluoxetine Epigenetically Alters the CaMKIIα Promoter in Nucleus Accumbens to Regulate ΔFosB Binding and Antidepressant Effects. Neuropsychopharmacology. 39(5): 1178-86.

 

Maze I, Chaudhury D, Dietz DM, Von Schimmelmann M, Kennedy PJ, Lobo MK, Sillivan SE, Miller ML, Bagot RC,  Sun H, Turecki G, Neve RL, Hurd YL, Shen L, Han MH, Schaefer A, Nestler EJ. G9a controls neuronal subtype specification in striatum. Nature Neuroscience. 17(4): 533-9.

 

Scobie KN, Damez-Werno D*, Sun H*, Shao N, Gancarz A, Panganiban CH, Dias C, Koo J, Caiafa P, Kaufman L, Neve RL, Dietz DM, Shen L, Nestler EJ. Essential Role of Poly(ADP-ribosyl)ation in Cocaine Action. Proc Natl Acad Sci USA. 111(5): 2005-10.

 

Dietz DM*, Kennedy PJ*, Sun H*, Maze I, Gancarz AM, Vialou V, Koo JW, Mouzon E, Ghose S, Tamminga CA, Nestler EJ. ΔFosB induction in prefrontal cortex by antipsychotic drugs is associated with negative behavioral  outcomes. Neuropsychopharmacology. 39(3): 538-44.

​

Walsh JJ, Friedman AK, Sun H, Heller EA, Ku SM, Juarez B, Burnham VL, Mazei-Robison MS, Ferguson D, Golden SA, Koo JW, Chaudhury D, Cristoffel DJ, Pomeranz L, Friedman JM, Russo SJ, Nestler EJ, Han MH. Stress and CRF gate neural activation of BDNF in the mesolimbic reward pathway. Nature Neuroscience. 17(1): 27-9.

​

2013

Sun H, Kennedy PJ, Nestler EJ. Epigenetics of the depressed brain: role of histone acetylation and methylation. Neuropsychopharmacology. 38(1): 124-37.

​

2012

Sun H, Maze I, Dietz DM, Scobie KN, Kennedy PJ, Damez-Werno D, Neve RL, Zachariou V, Shen L, Nestler EJ.  Morphine epigenomically regulates behavior through alterations in histone H3 lysine 9 dimethylation in the nucleus accumbens. Journal of Neuroscience. 32 (48): 17454-64.

 

Koo JW, Mazei-Robison MS, Chaudhury D, Juarez B, LaPlant Q, Ferguson D, Feng J, Sun H, Scobie KN, Damez- Werno D, Crumiller M, Ohnishi YN, Ohnishi YH, Mouzon E, Dietz DM, Lobo MK, Neve RL, Russo SJ, Han MH, Nestler EJ. BDNF is a negative modulator of morphine action. Science. 338(6103): 124-8.

 

Damez-Werno D, LaPlant Q, Sun H, Scobie KN, Dietz DM, Walker IM, Koo JW, Vialou VF, Mouzon E, Russo SJ,  Nestler EJ. Drug experience epigenetically primes Fosb gene inducibility in rat nucleus accumbens. Journal of Neuroscience. 32(30): 10267-72.

 

Dietz DM, Sun H, Lobo M, Cahill ME, Chadwick B, Gao V, Koo JW, Mazei-Robison M, Dias C, Maze I, Damez- Werno D, Dietz KC, Scobie KN, Ferguson D, Christoffel D, Ohnishi Y, Hodes GE, Zheng Y, Neve RL, Hahn KM, Russo SJ, Nestler EJ. Rac1 is essential in cocaine-induced structural plasticity of nucleus accumbens neurons. Nature Neuroscience. 15(6): 891-6.

 

Sun H, Cocker PJ, Zeeb FD, Winstanley CA. Chronic atomoxetine treatment during adolescence decreases impulsive choice, but not impulsive action, in adult rats and alters markers of synaptic plasticity in the orbitofrontal cortex. Psychopharmacology. 219(2): 285-301.

​

2011

Covington HE 3rd, Maze I, Sun H, Bomze HM, DeMaio KD, Wu EY, Dietz DM, Lobo MK, Ghose S, Mouzon E, Neve RL, Tamminga CA, Nestler EJ. A role for repressive histone methylation in cocaine-induced vulnerability to stress.  Neuron. 71(4): 656-70.

 

Maze I, Feng J, Wilkinson MB, Sun H, Shen L, Nestler EJ. Cocaine dynamically regulates heterochromatin and repetitive element unsilencing in nucleus accumbens. Proc Natl Acad Sci USA. 108 (7): 3035-40.

​

2010

Lobo MK, Covington HE 3rd, Chaudhury D, Friedman AK, Sun H, Damez-Werno D, Dietz DM, Zaman S, Koo JW, Kennedy PJ, Mouzon E, Mogri M, Neve RL, Deisseroth K, Han MH, Nestler EJ. Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward. Science. 330(6002):385-90.

 

Sun H, Green TA, Theobald DE, Birnbaum SG, Graham DL, Zeeb FD, Nestler EJ, Winstanley CA. Yohimbine increases impulsivity through activation of cAMP response element binding in the orbitofrontal cortex. Biol  Psychiatry. 67(7): 649-56.

​

 Here is a link to the Google Scholar Page.

Sun Lab

  • Twitter
  • bluesky-black-round-circle-logo-24460
bottom of page